Trigonometry DLA Series

Right Triangle

Angles \& Sides

In this DLA, we are are going to study the right triangle.

Angles A and B are complementary angles.

Example:

In triangle $A B C$, angle B is twice angle A, and angle C is 90°.
Find the measure of missing angles.

Solution:

Let x be the measure of angle A, draw a triangle, and label each angle according to the given information,

Solution(continued):

$$
\begin{aligned}
\hline m \angle A+m \angle B+m \angle C & =180^{\circ} & & \text { (Given Fact) } \\
\boxed{x}+\boxed{2 x}+90 & =180^{\circ} & & \text { (Substitution) } \\
3 x+90 & =180 & & \text { (Simplify) } \\
3 x & =90 & & \text { (Equation Property) } \\
x & =30 & & \text { (Division property) }
\end{aligned}
$$

So angle A is 30°, and angle B is 60°.

$$
m \angle A=30^{\circ}, m \angle B=60^{\circ}
$$

Example:

In triangle $A B C$, angles A and B are equal and angle C is 90°.
Find the measure of missing angles.

Solution:

Let x be the measure of angle A, draw a triangle, and label each angle according to the given information,

Solution(continued):

$$
\begin{aligned}
\boxed{m \angle A}+\boxed{m \angle B}+\boxed{m \angle C} & =180^{\circ} & & \text { (Given Fact) } \\
\boxed{x}+\boxed{x}+\boxed{90} & =180^{\circ} & & \text { (Substitution) } \\
2 x+90 & =180 & & \text { (Simplify) } \\
2 x & =90 & & \text { (Equation Property) } \\
x & =45 & & \text { (Division property) }
\end{aligned}
$$

So angle A is 45°, and angle B is 45°.

$$
m \angle A=45^{\circ}, m \angle B=45^{\circ}
$$

Example:

In triangle $A B C$, the measures of angles A and B are two consecutive even integers and angle C is 90°. Find the measure of missing angles.

Solution:

Let x be the measure of angle A, and angle B would be $x+2$, then draw a triangle, and label each angle according to the given information,

Solution(continued):

$$
\begin{aligned}
\boxed{m \angle A}+\boxed{m \angle B}+\boxed{m \angle C} & =180^{\circ} & & \text { (Given Fact) } \\
\boxed{x}+\boxed{x+2}+\boxed{90} & =180^{\circ} & & \text { (Substitution) } \\
2 x+92 & =180 & & \text { (Simplify) } \\
2 x & =88 & & \text { (Equation Property) } \\
x & =44 & & \text { (Division property) }
\end{aligned}
$$

So angle A is 44°, and angle B is 46°.

$$
m \angle A=44^{\circ}, m \angle B=46^{\circ}
$$

Now we study the sides of a right triangle.

Sides a and b are called legs.
Side c is called hypotenuse.
Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

Example:

Two legs of a right triangle are 5 and 12 inches. Find its hypotenuse.

Solution:

Let x be the measure of its hypotenuse, then draw a triangle, and label each side according to the given information, B

Solution(continued):

Using the pythagorean theorem,

$$
\begin{aligned}
\boxed{a^{2}}+\sqrt{b^{2}} & =\boxed{c^{2}} & & \text { (Given Fact) } \\
\boxed{5^{2}}+\sqrt{12^{2}} & =\boxed{x^{2}} & & \text { (Substitution) } \\
25+144 & =x^{2} & & \text { (Simplify) } \\
169 & =x^{2} & & \text { (Simplify) } \\
\sqrt{169} & =x & & \text { (Root property) } \\
13 & =x & & \text { (Root property) }
\end{aligned}
$$

So the hypotenuse is 13 inches.
The hypotenuse is 13 inches.

Example:

One leg of a right triangle is 15 cm . Its hypotenuse 1 cm more than twice the other leg. Find the missing side and the hypotenuse.

Solution:

Let x be the measure of the missing leg, then its hypotenuse is $2 x+1$. Draw a right triangle, and label each side according to the given information,

Solution(continued):

Using the pythagorean theorem,

$$
\begin{aligned}
\boxed{a^{2}}+\boxed{b^{2}} & =\boxed{c^{2}} & & \text { (Given Fact) } \\
\boxed{15^{2}}+\boxed{x^{2}} & =\boxed{(2 x+1)^{2}} & & \text { (Substitution) } \\
225+x^{2} & =4 x^{2}+4 x+1 & & \text { (Simplify) } \\
0 & =3 x^{2}+4 x-224 & & \text { (Simplify) }
\end{aligned}
$$

A quadratic equation is of the form $a x^{2}+b x+c=0$. To solve for x, use the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

substituting the values of the coefficients a, b and c.

Solution(continued):
With the equation

$$
3 x^{2}+4 x-224=0
$$

We have $a=3, b=4$, and $c=-224$.

$$
\begin{gathered}
x=\frac{-4 \pm \sqrt{4^{2}-4(3)(-224)}}{2(3)} \\
x=\frac{-4 \pm \sqrt{16+2688}}{6} \\
x=\frac{-4 \pm \sqrt{2704}}{6} \\
x=\frac{-4 \pm 52}{6}
\end{gathered}
$$

Solution(continued):

$$
\begin{gathered}
x=\frac{-4+52}{6}, x=\frac{-4-52}{6} \\
x=\frac{48}{6}, x=\frac{-56}{6} \\
x=8, x=\frac{-28}{3}
\end{gathered}
$$

since x represents a distance, it cannot be negative so the acceptable answer is 8 . The missing leg is 8 cm and the hypotenuse is $2(8)+1=17 \mathrm{~cm}$.

The missing leg is 8 cm , and its hypotenuse is 17 cm .

Right Triangle

Start at ELAC, Go Anywhere

